原子力顯微鏡(AtomicForceMicroscope,AFM),一種可用來研究包括絕緣體在內(nèi)的固體材料表面結(jié)構(gòu)的分析儀器。它通過檢測(cè)待測(cè)樣品表面和一個(gè)微型力敏感元件之間的極微弱的原子間相互作用力來研究物質(zhì)的表面結(jié)構(gòu)及性質(zhì)。將一對(duì)微弱力敏感的微懸臂一端固定,另一端的微小針尖接近樣品,這時(shí)它將與其相互作用,作用力將使得微懸臂發(fā)生形變或運(yùn)動(dòng)狀態(tài)發(fā)生變化。掃描樣品時(shí),利用傳感器檢測(cè)這些變化,就可獲得作用力分布信息,從而以納米級(jí)分辨率獲得表面形貌結(jié)構(gòu)信息及表面粗糙度信息。
隨著科學(xué)技術(shù)的發(fā)展,生命科學(xué)開始向定量科學(xué)方向發(fā)展。大部分實(shí)驗(yàn)的研究重點(diǎn)已經(jīng)變成生物大分子,特別是核酸和蛋白質(zhì)的結(jié)構(gòu)及其相關(guān)功能的關(guān)系。因?yàn)锳FM的工作范圍很寬,可以在自然狀態(tài)(空氣或者液體)下對(duì)生物醫(yī)學(xué)樣品直接進(jìn)行成像,分辨率也很高。因此,AFM已成為研究生物醫(yī)學(xué)樣品和生物大分子的重要工具之一。AFM應(yīng)用主要包括三個(gè)方面:生物細(xì)胞的表面形態(tài)觀測(cè);生物大分子的結(jié)構(gòu)及其他性質(zhì)的觀測(cè)研究;生物分子之間力譜曲線的觀測(cè)。
原子力顯微鏡研究對(duì)象可以是有機(jī)固體、聚合物以及生物大分子等,樣品的載體選擇范圍很大,包括云母片、玻璃片、石墨、拋光硅片、二氧化硅和某些生物膜等,其中常用的是新剝離的云母片,主要原因是其非常平整且容易處理。而拋光硅片要用濃硫酸與30%雙氧水的7∶3混合液在90℃下煮1h。利用電性能測(cè)試時(shí)需要導(dǎo)電性能良好的載體,如石墨或鍍有金屬的基片。
試樣的厚度,包括試樣臺(tái)的厚度,為10mm。如果試樣過重,有時(shí)會(huì)影響Scanner的動(dòng)作,請(qǐng)不要放過重的試樣。試樣的大小以不大于試樣臺(tái)的大小(直徑20mm)為大致的標(biāo)準(zhǔn)。稍微大一點(diǎn)也沒問題。但是,值約為40mm。如果未固定好就進(jìn)行測(cè)量可能產(chǎn)生移位。請(qǐng)固定好后再測(cè)定。
原子力顯微鏡(atomicforcemicroscope,簡(jiǎn)稱AFM)利用微懸臂感受和放大懸臂上尖細(xì)探針與受測(cè)樣品原子之間的作用力,從而達(dá)到檢測(cè)的目的,具有原子級(jí)的分辨率。由于原子力顯微鏡既可以觀察導(dǎo)體,也可以觀察非導(dǎo)體,從而彌補(bǔ)了掃描隧道顯微鏡的不足。原子力顯微鏡是由IBM公司蘇黎世研究中心的格爾德·賓寧于一九八五年所發(fā)明的,其目的是為了使非導(dǎo)體也可以采用類似掃描探針顯微鏡(SPM)的觀測(cè)方法。原子力顯微鏡(AFM)與掃描隧道顯微鏡(STM)的差別在于并非利用電子隧穿效應(yīng),而是檢測(cè)原子之間的接觸,原子鍵合,范德瓦耳斯力或卡西米爾效應(yīng)等來呈現(xiàn)樣品的表面特性。
原子力顯微鏡的基本原理是:
將一個(gè)對(duì)微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由于針尖原子與樣品表面原子間存在極微弱的排斥力,通過在掃描時(shí)控制這種力的恒定,帶有針尖的微懸臂將對(duì)應(yīng)于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運(yùn)動(dòng)。利用光學(xué)檢測(cè)法或隧道電流檢測(cè)法,可測(cè)得微懸臂對(duì)應(yīng)于掃描各點(diǎn)的位置變化,從而可以獲得樣品表面形貌的信息。我們以激光檢測(cè)原子力顯微鏡(AtomicForceMicroscopeEmployingLaserBeamDeflectionforForceDetection,Laser-AFM)來詳細(xì)說明其工作原理。